
O 1991, D~gitnl Co~mdtirzg, Inc

20 3701390 DATA BASE MANAGEMENT] APRIL 1991

Distributing: How To
Take Advantage of the
SQL Environment
By Dr. George Schussel

istributed DBMS- and SQL-based
clientlserver computing are both in-

creasing as companies downsize and spread
their data base processing over several smaller
machines. This is causing the cost of OLTP to
decrease, even as the total number of machine
cycles increases; the reason is that the com-
bination of small machine cycles and OSl2 or
UNIX platforms allows OLTP processing on
environments that cost one to five percent of
a mainframe configuration.

The best way to take advantage of the better
performance (per dollar) of smaller machines
is to use distributed DBMS software. The
market is made up of products in two
categories: true distributed DBMS and
clientlservers. As vendors improve the
software capabilities of their clientlserver
systems, it is likely that the functional
differences between these two will tend to
disappear, but probably not before the mid-
1990s.

Most SQL DBMS vendors have jumped
into the clientlserver game and the
functionality delivered by these systems is not
that different from true distributed DBMS.
The key difference is that a clientlserver
approach has a DBMS and dictionary at only
certain designated nodes where the data
resides; the client program is required to
navigate to the correct server node by
physically knowing which particular server to
access for the necessary data. The clientlserv-
er DBMS then does not support location
transparency. On the contrary, a distributed
DBMS that has a local DBMS and local data
dictionary at each point in the network
relieves the application program from having
to perform navigation. This location
transparency requirement, however, makes
building a true distributed DBMS much more
complex than building a clientlserver DBMS.

Interestingly, IBM does the reverse. They

talk about "clientlserver" but really mean true
distributed computing. IBM is building a fully
functional distributed architecture for its SQL
products: DB2, SQL/DS, SQLl400, OS@EE
and, consistent with the complexity of true
distributed DBMS, is taking several years to
develop it.

Distributed data base software has to
provide all of the functionality of multiuser,
mainframe data base software but allow the
data in the data base itself to exist on a number
of different but physically connected com-
puters. The kinds of functionality the dis-
tributed DBMS must supply include main-
tenance of data integrity by automatically
locking records and rolling back transactions
that are only partially complete. The DBMS
must attack deadlocks, automatically recover-
ing completed transactions in the event of
system failure. There should be a capability to
optimize data access for a wide variety of
different application demands. Distributed
DBMS should have specialized 110 handling
and space management techniques to ensure
fast and stable transaction throughput.
Naturally, these products must also have full
data base security and administration utilities.

Requirements for Distributed DBMS
Following are seven comprehensive re-

quirements that represent the current thinking
on what the DBMS must perform to be
qualified as fully distributed. While it is true
that there are no products available today that
meet all seven requirements, most major
vendors such as ASKIIngres, Oracle and IBM
are aggressively adding functionality to their
products to meet them.

Location Transparency - Programs and
queries may access a single logical view of the
data base; this logical view may be physically
distributed over a number of different sites
and nodes. Queries can access distributed

objects for both read~ng and writing without
knowing the location of those objects. A change
in the physical location of objects without
change in the logical view requires no change of
application programs. There is support for a
distributed JOIN. To meet this requirement, it is
necessary for full, local DBMS and the data
dictionary to reside on each node.

Performance Transparency - It is essen-
tial to have a cost-based software optimizer to
create the navigation for the satisfaction of
queries. This software optimizer should deter-
mine the best path to the data. Performance of
the software optimizer should not depend
upon the original source of the query. In other
words, because the query originates from
point A, it should not cost more to run than the
same query originating from point B.

An interesting evaluation and rating proce-
dure for software optimizers has been
developed by David McGoveran of Database
Associates. McGoveran's rating scheme
(described in the Fall 1991 ItzfoDB) starts with
the lowest level of functionality (class 1)
where the optimizer is syntax sensitive and
uses no intelligence in the search strategy
(e.g., Oracle's Version 6). The schema
progresses to the most sophisticated class of
optimizers (class 6), which is syntax insensi-
tive and uses cost data and heuristic algo-
rithms to determine an optimal search
strategy. This class also takes advantage of
statistics about the data base to perform a
global optimization in a fully distributed
environment. (There are no Class 6 optimizers
at this time.)

Copy Transparency -The DBMS should
optionally support the capability of having
multiple physical copies of the same logical
data. Advantages of this include superior
performance from having local rather than
remote access to data, and non-stop operation
in the event of one site going down. If a site is
down, the software must be smart enough to
re-route a query to another source where data
exists. The system should support "fail over
reconstruction." This means that when the
down site becomes live again, the software
automatically reconstructs the data at that site
to make it current.

Transaction Transparency - The system
supports transactions that update data at
multiple sites. Those transactions behave
exactly the same as others that are local. This
means that transactions will commit or abort.
In order to have distributed commit
capabilities, a technical protocol known as a
two-phase commit is required.

Fragrttentation Transparency - The dis-
tributed DBMS allows auser to cut relations into
pieces (horizontally or vertically) and place
those pieces at multiple physical sites. The
software has a capability to recombine those
tables into units as necessary to answer queries.

Schema Change Transparency - Chan-
ges to data base object design need only be
made once in the distributed data dictionary.
The dictionary and DBMS automatically
populate other physical catalogs.

Local DBMS Transparency - The dis-
tributed DBMS services are provided regard-
less of the brand of the local DBMS. This
means that support for remote data access and
gateways into heterogeneous DBMS products
is necessary.

Advantages of Distributed Data Base
Technology

Distributed DBMS technology provides
the highest level of services for supporting
distributed processing. Specific advantages
from the use of this technology include:

As your processing needs grow, you can
upgrade the hardware environment in-
crementally and as needed without
throwing away your previous invest-
ments. By spreading the processing over
many smaller machines. you take ad- . .
vantage of the downsized cost ad-
vantage that smaller machines hold over
larger ones.
The fact that a distributed DBMS offers
support for replicated data can con-
tribute mightily to satisfying require-
ments for high availability and fault
tolerance. This same architecture is
helpful for hardware maintenance be-
cause of its modularity.
Distributed DBMS technology offers
high performance SQL-based process-
ing because its architecture takes ad-
vantage of parallel processing on many
computers across a network. As a result,
you can use relational processing for
online transactions that might otherwise
have been impractical on a single
mainframe.

Communication costs can be quite high;
using a two-phase commit protocol
generates a lot of communications traf-
fic.
There is need for gateway technology to
handle SQL differences among the dif-
ferent DBMS vendors.
The predictability of total costs for dis-
tributed queries is variable. In other
words, it is hard to predict ahead of time
how much it's going to cost you to get a
job done.
Supporting concurrency along yi th
deadlock protection is a very diffic&
technology.
Supporting full recovery with fail over
reconstruction is very expensive.
Performing a JOIN across different
physical nodes is very expensive using
today's technology and networks.
Some advancedrelational functions that
are reasonable in a single computer are
difficult and expensive across a dis-
tributed network (e.g., the enforcing of
semantic integrity restraints).
The job of the data base administrator is
more difficult because, added to all cur-
rently existing requirements, are the in-
tegrity, optimizer, communication and
data owner issues of the distributed
world.
Data security issues are not well under-
stood or proven. It would appear that a
distributed environment is more suscep-
tible to security breaks than a data base
contained in one box.

Conclusion
Downsizing and distributing the comput-

ing environment are very real and practical
approaches to getting more functionality at a
lower cost. The availability of SQL has
greatly accelerated the movement toward
distributed and client/server DBMS environ-
ments. This has been principally because SQL
has emerged as the standard data base
language. The fact that SQL is a relational
language and, therefore, supports set process-
ing is also very helpful in a distributed

iqote that a client/server SQL type of environment. Distributed and client/server

DBMS (like Sybase or Gupta), while not SQL DBMSes form the in the

meeting all seven of the requirements above, migration to the distributed network-based

does offer the preceding advantages. parallel computing architectures of the 1990s.

Potential Problems with DDB
In pursuing these advantages, however, the Was this article of value to you? l f so ,

please let us know by circling Reader prospective user is wise to understand the
potential pitfalls of this technology: Ser~,ice No. 79.

3701390 DATA BASE MANAGEMENTIAPRIL 1991 21

